## WELCOME



## Sinx curve



# Convergent Sequence : A Geometrical Approach 

J.Maria Joseph PhD

Assistant Professor, P.G. and Research Department of Mathematics, St.Joseph's College (Autonomous),
Tiruchirappalli - 620 002, India.

## St.Joseph's College,Trichy

## Outline

(1) Motivation

(2) Sequence
(3) Convergence
(4) Bounded Sequence
(5) Monotonic Sequences

## Introduction to Sets

LD Forget everything you know about numbers.

## Introduction to Sets

LD Forget everything you know about numbers.
Ao In fact, forget you even know what a number is.

## Introduction to Sets

Lo Forget everything you know about numbers.
Ao In fact, forget you even know what a number is.
(0) This is where mathematics starts.

## Introduction to Sets

LD Forget everything you know about numbers.
Ao In fact, forget you even know what a number is.
Lo This is where mathematics starts.
Lod Instead of math with numbers, we will now think about math with "things".

## Introduction to Sets

For Example
The items you wear: shoes, socks, hat, shirt, pants, and so on.

## Introduction to Sets

For Example
The items you wear: shoes, socks, hat, shirt, pants, and so on. I'm sure you could come up with at least a hundred.

## Introduction to Sets

For Example
The items you wear: shoes, socks, hat, shirt, pants, and so on. I'm sure you could come up with at least a hundred. This is known as a set.

## Introduction to Sets

For Example
The items you wear: shoes, socks, hat, shirt, pants, and so on. I'm sure you could come up with at least a hundred.

## $\left\{\begin{array}{l}10 \\ n\end{array}\right\}$

 This is known as a set.
## Introduction to Sets

For Example
Types of fingers.

## Introduction to Sets

For Example
Types of fingers. This set includes index, middle, ring, and pinky.

## Introduction to Sets

For Example
Types of fingers. This set includes index, middle, ring, and pinky.

## Introduction to Sets

For Example
Types of fingers. This set includes index, middle, ring, and pinky.

So it is just things grouped together with a certain property in common.

## Introduction to Sets

What is set?
Well, simply put, it's a collection.

## Introduction to Sets

What is set?
Well, simply put, it's a collection.
Definition
A set is a collection of well defined objects or things.

## Introduction to Sets

Notations
Sets are generally denoted by capital letters $A, B, C, \cdots$ etc.,

## Introduction to Sets

Notations
Sets are generally denoted by capital letters $A, B, C, \cdots$ etc.,
Elements of the sets are denoted by the small letters $a, b, c, d, e, f, \cdots$ etc.,

## Introduction to Sets

Notations
Sets are generally denoted by capital letters $A, B, C, \cdots$ etc.,
Elements of the sets are denoted by the small letters $a, b, c, d, e, f, \cdots$ etc.,
Is $x$ is an element of the set $S$, then it is written as $x \in S$ and read as $x$ belongs to $S$.

## Introduction to Sets

## Notations

Sets are generally denoted by capital letters $A, B, C, \cdots$ etc.,
Elements of the sets are denoted by the small letters $a, b, c, d, e, f, \cdots$ etc.,
Is $x$ is an element of the set $S$, then it is written as $x \in S$ and read as $x$ belongs to $S$.
T If $x$ is a not the member of the set $S$, then it is written as $x \notin S$ and read as $x$ does not belong to $S$.

## Introduction to Sets

## Example

Consider the set $V=\{a, e, i, o, u\}$
$a \in V, i \in V$ but $b \notin V$

## Introduction to Sets

## Example

Consider the set $V=\{a, e, i, o, u\}$
$a \in V, i \in V$ but $b \notin V$
$V$ is the set of vowels in alphabet.

## Introduction to Sets

Example
Consider the set $V=\{a, e, i, o, u\}$
$a \in V, i \in V$ but $b \notin V$
$V$ is the set of vowels in alphabet.
Is it ?
Girls are brilliant.

## Introduction to Sets

Example
Consider the set $V=\{a, e, i, o, u\}$
$a \in V, i \in V$ but $b \notin V$
$V$ is the set of vowels in alphabet.
Is it ?
Girls are brilliant.
Is it a set?

## Introduction to Sets

## Example

Consider the set $V=\{a, e, i, o, u\}$
$a \in V, i \in V$ but $b \notin V$
$V$ is the set of vowels in alphabet.
Is it ?
Girls are brilliant.
Is it a set?
No, because here brilliant is not defined.

## Sets

$\mathbb{N}$ - Natural Numbers $\{1,2,3,4, \cdots\}$

## Sets

$\mathbb{N}$ - Natural Numbers $\{1,2,3,4, \cdots\}$
$\mathbb{Z} \quad$ - Set of Integers $\{0, \pm 1, \pm 2, \pm 3, \pm 4, \cdots\}$

## Sets

$\mathbb{N}$ - Natural Numbers $\{1,2,3,4, \cdots\}$
$\mathbb{Z}$ - Set of Integers $\{0, \pm 1, \pm 2, \pm 3, \pm 4, \cdots\}$ $\mathbb{Q}$ - Set of Rational Numbers $\left\{\frac{p}{q}, q \neq 0\right\}$

## Sets

$\mathbb{N}$ - Natural Numbers $\{1,2,3,4, \cdots\}$
$\mathbb{Z}$ - Set of Integers $\{0, \pm 1, \pm 2, \pm 3, \pm 4, \cdots\}$
$\mathbb{Q}$ - Set of Rational Numbers $\left\{\frac{p}{q}, q \neq 0\right\}$
$\mathbb{R}$ - Set of Real Numbers $(-\infty, \infty)$

## Graphical View

## Graphical View

## $\mathbb{N}$

## Graphical View

## $\mathbb{N}$

## Graphical View



## Graphical View


$\mathbb{N} \subset \mathbb{Z}$

## Graphical View


$\mathbb{N} \subset \mathbb{Z}$
$\mathbb{Q}$

## Graphical View


$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$

## Graphical View



## $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \quad \mathbb{R}$

## Graphical View


$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

## Function

\&8: Function - Relation between two non-empty sets.

## Function

8: Function - Relation between two non-empty sets.
$\%$ Let $A$ and $B$ be two non-empty sets. A function or mapping $f$ from $A$ into $B$ is a rule which assigns each element $a \in A$ a unique element $b \in B$.

## Function

8: Function - Relation between two non-empty sets.
8 Let $A$ and $B$ be two non-empty sets. A function or mapping $f$ from $A$ into $B$ is a rule which assigns each element $a \in A$ a unique element $b \in B$.
8. In mathematically written as $f: A \rightarrow B$ defined by $f(a)=b$ for all $a \in A$.


## * Consider the function $f: A \rightarrow B$ by $f(a)=b$



## * Consider the function $f: A \rightarrow B$ by $f(a)=b$



* Consider the function $f: A \rightarrow B$ by $f(a)=b$

* Consider the function $f: A \rightarrow B$ by $f(a)=b$

* Consider the function $f: A \rightarrow B$ by $f(a)=b$

* Consider the function $f: A \rightarrow B$ by $f(a)=b$

* Consider the function $f: A \rightarrow B$ by $f(a)=b$
* $A$ is called the domain of $f$

* Consider the function $f: A \rightarrow B$ by $f(a)=b$
* $A$ is called the domain of $f$
* $B$ is called the co-domain of $f$

* Consider the function $f: A \rightarrow B$ by $f(a)=b$
* $A$ is called the domain of $f$
* $B$ is called the co-domain of $f$
* The element $b \in B$ is called the image of $a$ under $f$.

* Consider the function $f: A \rightarrow B$ by $f(a)=b$
* $A$ is called the domain of $f$
* $B$ is called the co-domain of $f$
* The element $b \in B$ is called the image of $a$ under $f$.
* The element $a \in A$ is called the pre-image of $b$ under $f$.


## Example <br> Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$.

## Example

Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$. Any positive real number $x$ has two pre-images under $f$ given by $\sqrt{x}$ and $-\sqrt{x}$.

## Example

Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$. Any positive real number $x$ has two pre-images under $f$ given by $\sqrt{x}$ and $-\sqrt{x}$.
Example 9 has two pre-images which are 3 and -3 .

## Example

Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$. Any positive real number $x$ has two pre-images under $f$ given by $\sqrt{x}$ and $-\sqrt{x}$.
Example 9 has two pre-images which are 3 and -3 .
Any negative real number $x$ does not have a pre-image under $f$

## Example

Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$. Any positive real number $x$ has two pre-images under $f$ given by $\sqrt{x}$ and $-\sqrt{x}$.
Example 9 has two pre-images which are 3 and -3 .
Any negative real number $x$ does not have a pre-image under $f$
Example -9 has no pre-image under $f$

## Example

Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$. Any positive real number $x$ has two pre-images under $f$ given by $\sqrt{x}$ and $-\sqrt{x}$.
Example 9 has two pre-images which are 3 and -3 .
Any negative real number $x$ does not have a pre-image under $f$
Example -9 has no pre-image under $f$
So range set of this function is $\mathbb{R}^{+} \cup\{0\}$.

## Graphical



Is it function?

## Graphical



## Is it function? <br> Yes

## Graphical



## Graphical



## Graphical




## Graphical



## Graphical



## Graphical



## Graphical



## Graphical



## Graphical



## Is it function?

## Graphical



Is it function?
No

## Graphical



Is it function ? If it is, what type is it?

## Graphical



Is it function ? If it is, what type is it?
One - to - one (or) Injective

## Graphical



Is it function ? If it is, what type is it?

## Graphical



Is it function? If it is, what type is it?
Onto (or) Surjective

## Graphical



## Graphical



## Graphical




## Graphical



## Graphical



## Graphical



## Graphical



## Graphical



## Graphical



## Graphical



## Graphical



Constant Function
$f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x)=3$ is called a constant function. The range of $f$ is 3 .

## Introducing Sequence

## 唌 In maths, we call a list of numbers in order a sequence.

## Introducing Sequence

吗 In maths, we call a list of numbers in order a sequence.


Introducing Sequence
吗 In maths，we call a list of numbers in order a sequence．
鲒 Each number in a sequence is called a term．
喂 If terms are next to each other they are referred to as consecutive terms．

Introducing Sequence
㖪 In maths，we call a list of numbers in order a sequence．
榢 Each number in a sequence is called a term．
嗗 If terms are next to each other they are referred to as consecutive terms．
唯 When we write out sequences，consecutive terms are usually separated by commas．

## Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

## Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Graphical


## Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Graphical


## Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Graphical


## Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Graphical


## Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Graphical


## Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Graphical


## Example

Consider the following collection of real numbers given by

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots
$$

Graphical


This is an example of sequence of real numbers.

## Sequence is a function whose domain is the set of natural numbers.

Sequence is a function whose domain is the set of natural numbers.

Definition
Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a function and $f(n)=a_{n}$. Then $a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots$, is called the sequence in $\mathbb{R}$ determined by the function $f$ and is denoted by $\left\{a_{n}\right\}, a_{n}$ is called the $n^{\text {th }}$ term of the sequence.

## Infinite and finite sequences

A sequence can be infinite. That means it continues forever.

## Infinite and finite sequences

A sequence can be infinite. That means it continues forever. For example, the function $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(n)=10 n$ determines the infinite sequence.

## Infinite and finite sequences

A sequence can be infinite. That means it continues forever.
For example, the function $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(n)=10 n$ determines the infinite sequence.
$10,20,30,40,50,60, \cdots$

## Infinite and finite sequences

A sequence can be infinite. That means it continues forever. For example, the function $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(n)=10 n$ determines the infinite sequence.
$10,20,30,40,50,60, \cdots$
If a sequence has a fixed number of terms it is called a finite sequence.

## Infinite and finite sequences

A sequence can be infinite. That means it continues forever.
For example, the function $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(n)=10 n$ determines the infinite sequence.

$$
10,20,30,40,50,60, \cdots
$$

If a sequence has a fixed number of terms it is called a finite sequence.
For example, the function $f: \mathbb{N} \rightarrow \mathbb{R}$ by $f(n)=(-1)^{n}$, determines the finite sequence.

## Infinite and finite sequences

A sequence can be infinite. That means it continues forever.
For example, the function $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(n)=10 n$ determines the infinite sequence.

$$
10,20,30,40,50,60, \cdots
$$

If a sequence has a fixed number of terms it is called a finite sequence.
For example, the function $f: \mathbb{N} \rightarrow \mathbb{R}$ by $f(n)=(-1)^{n}$, determines the finite sequence.

$$
-1,1
$$

## Example of Sequence

The function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n)=n^{2}$.

## Example of Sequence

The function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n)=n^{2}$.
The function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n)=\frac{1}{n}$.

## Example of Sequence

The function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n)=n^{2}$.
The function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n)=\frac{1}{n}$.
The function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n)=x^{n-1}$.

## Example of Sequence

The function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n)=n^{2}$.
The function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n)=\frac{1}{n}$.
(The function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n)=x^{n-1}$. (Geometric Sequence)

## Example of Sequence

The function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n)=n^{2}$.
The function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n)=\frac{1}{n}$.
(The function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n)=x^{n-1}$. (Geometric Sequence)

Before giving the formal definition of convergence of a sequence, let us take a look at the behaviour of the sequences in the above examples.

The elements of the sequence $\frac{1}{n}$ seem to approach a single point as n increases.

The elements of the sequence $\frac{1}{n}$ seem to approach a single point as n increases. In these sequence the values are either increasing or decreasing as $n$ increases, but they eventually approach a single point.

The elements of the sequence $\frac{1}{n}$ seem to approach a single point as n increases. In these sequence the values are either increasing or decreasing as $n$ increases, but they eventually approach a single point. Though the elements of the sequence $\frac{(-1)^{n}}{n}$ oscillate, they eventually approach the single point 0 .

The elements of the sequence $\frac{1}{n}$ seem to approach a single point as $n$ increases. In these sequence the values are either increasing or decreasing as $n$ increases, but they eventually approach a single point. Though the elements of the sequence $\frac{(-1)^{n}}{n}$ oscillate, they eventually approach the single point 0 . The common feature of these sequences is that the terms of each sequence accumulate at only one point.

Convergence of a Sequence
We say that a sequence $\left(x_{n}\right)$ converges if there exists $x_{0} \in \mathbb{R}$ such that for every $\epsilon>0$, there exists a positive integer $N$ (depending on $\epsilon$ ) such that $x_{n} \in\left(x_{0}-\epsilon, x_{0}+\epsilon\right)$ for all $n \geq N$.


Definition
Let $\left\{a_{n}\right\}$ be a sequence of real numbers.


Definition
Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I


Definition
Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow /$ iff given $\epsilon>0$

## Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\quad\left\{a_{n}\right\} \rightarrow l$ iff given $\epsilon>0$


## Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow 1$ iff given $\epsilon>0$ there exists a natural number $N$


## Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow 1$ iff given $\epsilon>0$ there exists a natural number $N$ such that $a_{n} \in(I-\epsilon, I+\epsilon)$


## Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number $N$ such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.


## Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number $N$ such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.


## Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number $N$ such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.


## Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number $N$ such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.


## Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number $N$ such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.


## Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number $N$ such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.


## Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow$ I iff given $\epsilon>0$ there exists a natural number $N$ such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.


## Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow 1$ iff given $\epsilon>0$ there exists a natural number $N$ such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.


## Definition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. $\left\{a_{n}\right\} \rightarrow 1$ iff given $\epsilon>0$ there exists a natural number $N$ such that $a_{n} \in(I-\epsilon, I+\epsilon)$ for all $n \geq N$.
















## Graphical View



For any $\epsilon>0$,

## Graphical View



For any $\epsilon>0$,

## Graphical View



For any $\epsilon>0, \exists$ a positive integer $N$

Graphical View


For any $\epsilon>0, \exists$ a positive integer $N$ such that $\left|a_{n}-L\right| \leq \epsilon$ for all $n>m$.

Graphical View


For any $\epsilon>0, \exists$ a positive integer $N$ such that $\left|a_{n}-L\right| \leq \epsilon$ for all $n>m$.

Graphical View


For any $\epsilon>0, \exists$ a positive integer $N$ such that $\left|a_{n}-L\right| \leq \epsilon$ for all $n>m$.

Graphical View


For any $\epsilon>0, \exists$ a positive integer $N$ such that $\left|a_{n}-L\right| \leq \epsilon$ for all $n>m$.

Graphical View


For any $\epsilon>0, \exists$ a positive integer $N$ such that $\left|a_{n}-L\right| \leq \epsilon$ for all $n>m$.

## Convergence of the sequence $1 / n$



## Convergence of the sequence $1 / n$



## Convergence of the sequence $1 / n$



The sequence $\frac{n}{n+1}$


The sequence $\frac{n}{n+1}$


The sequence $\frac{n}{n+1}$


The sequence $n^{2}$


The sequence $n^{2}$


The sequence $n^{2}$


## Properties of sequence

 1. A sequence cannot converge to two different limits.Properties of sequence

1. A sequence cannot converge to two different limits.
2. A sequence converges to real number $A$ and $B$ then $A=B$.

Properties of sequence

1. A sequence cannot converge to two different limits.
2. A sequence converges to real number $A$ and $B$ then $A=B$.
3. Any convergent sequence is a bounded sequence.

Properties of sequence

1. A sequence cannot converge to two different limits.
2. A sequence converges to real number $A$ and $B$ then $A=B$.
3. Any convergent sequence is a bounded sequence. Converse is not true.

Properties of sequence

1. A sequence cannot converge to two different limits.
2. A sequence converges to real number $A$ and $B$ then $A=B$.
3. Any convergent sequence is a bounded sequence. Converse is not true. Example : $\left\{(-1)^{n}\right\}$ is a bounded sequence but not a convergent sequence.

Properties of sequence

1. A sequence cannot converge to two different limits.
2. A sequence converges to real number $A$ and $B$ then $A=B$.
3. Any convergent sequence is a bounded sequence. Converse is not true. Example : $\left\{(-1)^{n}\right\}$ is a bounded sequence but not a convergent sequence.
4. Any convergent sequence is bounded.

## Naming sequences

Here are the names of some sequences which you may know already:

## Naming sequences

Here are the names of some sequences which you may know already:

$2,4,6,8,10, \cdots \quad$ Even Numbers

## Naming sequences

Here are the names of some sequences which you may know already:

$2,4,6,8,10, \cdots$<br>Even Numbers<br>$1,3,5,7,9, \cdots$<br>Odd numbers

## Naming sequences

Here are the names of some sequences which you may know already:

$2,4,6,8,10, \cdots$<br>Even Numbers<br>$1,3,5,7,9, \cdots$<br>Odd numbers<br>$3,6,9,12,15, \cdots$<br>Multiples of 3

## Naming sequences

Here are the names of some sequences which you may know already:

$2,4,6,8,10, \cdots$<br>Even Numbers<br>$1,3,5,7,9, \cdots$<br>Odd numbers<br>$3,6,9,12,15, \cdots$<br>Multiples of 3<br>$5,10,15,20,25, \cdots$<br>Multiples of 5

## Naming sequences

Here are the names of some sequences which you may know already:
$2,4,6,8,10, \cdots$
Even Numbers
$1,3,5,7,9, \cdots$
Odd numbers
$3,6,9,12,15, \cdots$
Multiples of 3
$5,10,15,20,25, \cdots$
Multiples of 5
$1,4,9,16,25, \cdots$
Square numbers

## Bounded above

A sequence $\left\{a_{n}\right\}$ is said to be bounded above if there exists a real number $k$ such that $a_{n} \leq k$ for all $n \in \mathbb{N}$. Then $k$ is called the upper bound of the sequence $\left\{a_{n}\right\}$.

## Graphical View



## Graphical View



## Range of the sequence is <br> $\left\{1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}\right\}$,

## Graphical View



# Range of the sequence is <br> $\left\{1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}\right\}$, Upper bounds are 1,2,3, $\cdots$ 

## Bounded below

A sequence $\left\{a_{n}\right\}$ is said to be bounded below if there exists a real number $k$ such that $a_{n} \geq k$ for all $n \in \mathbb{N}$. Then $k$ is called the lower bound of the sequence $\left\{a_{n}\right\}$.

## Graphical View



## Graphical View



## Range of the sequence is <br> $$
\left\{1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}\right\}
$$

## Graphical View



## Range of the sequence is $\left\{1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}\right\}$, Lower bounds are

$0,-1,-2, \cdots,-n$

## Bounded Sequence

A sequence $\left\{a_{n}\right\}$ is said to be bounded sequence if it has both bounded above and bounded below.

## Bounded Sequence

A sequence $\left\{a_{n}\right\}$ is said to be bounded sequence if it has both bounded above and bounded below.

## Example



## Bounded Sequence

A sequence $\left\{a_{n}\right\}$ is said to be bounded sequence if it has both bounded above and bounded below.

Example


This sequence has both upper and lower bound so it is bounded sequence.

## Example of Bounded Sequence

Consider the sequence $1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}$.

## Example of Bounded Sequence

Consider the sequence $1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}$. Here 1 is the lub and 0 is glb .

## Example of Bounded Sequence

Consider the sequence $1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}$. Here 1 is the lub and 0 is glb . It is bounded sequence.

## Example of Bounded Sequence

Consider the sequence $1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}$. Here 1 is the lub and 0 is glb . It is bounded sequence.
The sequence $1,2,3, \cdots, n, \cdots$ is

## Example of Bounded Sequence

Consider the sequence $1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}$. Here 1 is the lub and 0 is glb . It is bounded sequence.
The sequence $1,2,3, \cdots, n, \cdots$ is bounded below

## Example of Bounded Sequence

Consider the sequence $1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}$. Here 1 is the lub and 0 is glb . It is bounded sequence.
The sequence $1,2,3, \cdots, n, \cdots$ is bounded below but not bounded above.

## Example of Bounded Sequence

Consider the sequence $1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}$. Here 1 is the lub and 0 is glb . It is bounded sequence.
The sequence $1,2,3, \cdots, n, \cdots$ is bounded below but not bounded above. 1 is the glb of the sequence.

## Example of Bounded Sequence

The sequence $-1,-2,-3, \cdots,-n, \cdots$ is

## Example of Bounded Sequence

The sequence $-1,-2,-3, \cdots,-n, \cdots$ is bounded above

## Example of Bounded Sequence

The sequence $-1,-2,-3, \cdots,-n, \cdots$ is bounded above but not bounded below.

## Example of Bounded Sequence

The sequence $-1,-2,-3, \cdots,-n, \cdots$ is bounded above but not bounded below. -1 is the lub of the sequence.

## Example of Bounded Sequence

The sequence $-1,-2,-3, \cdots,-n, \cdots$ is bounded above but not bounded below. -1 is the lub of the sequence.
$1,-1,1,-1, \cdots, 1,-1, \cdots$ is

## Example of Bounded Sequence

The sequence $-1,-2,-3, \cdots,-n, \cdots$ is bounded above but not bounded below. -1 is the lub of the sequence.
$1,-1,1,-1, \cdots, 1,-1, \cdots$ is bounded sequence.

## Example of Bounded Sequence

The sequence $-1,-2,-3, \cdots,-n, \cdots$ is bounded above but not bounded below. -1 is the lub of the sequence.
$1,-1,1,-1, \cdots, 1,-1, \cdots$ is bounded sequence. 1 is lub and -1 is the glb of the sequence.

## Example of Bounded Sequence

The sequence $-1,-2,-3, \cdots,-n, \cdots$ is bounded above but not bounded below. - 1 is the lub of the sequence.
$1,-1,1,-1, \cdots, 1,-1, \cdots$ is bounded sequence. 1 is lub and -1 is the glb of the sequence.

Any constant sequence is bounded sequence.

## Monotonic increasing

A sequence $\left\{a_{n}\right\}$ is said to be monotonic increasing if $a_{n} \leq a_{n+1}$ for all $n$.

Monotonic increasing
A sequence $\left\{a_{n}\right\}$ is said to be monotonic increasing if
$a_{n} \leq a_{n+1}$ for all $n$. A sequence $\left\{a_{n}\right\}$ is said to be strictly monotonic increasing if $a_{n}<a_{n+1}$ for all $n$.

Monotonic increasing
A sequence $\left\{a_{n}\right\}$ is said to be monotonic increasing if
$a_{n} \leq a_{n+1}$ for all $n$. A sequence $\left\{a_{n}\right\}$ is said to be strictly monotonic increasing if $a_{n}<a_{n+1}$ for all $n$.

## Example

- $1,2,2,3,3,3,4,4,4,4,5,5,5,5,5, \cdots$ is a monotonic increasing sequence.

Monotonic increasing
A sequence $\left\{a_{n}\right\}$ is said to be monotonic increasing if
$a_{n} \leq a_{n+1}$ for all $n$. A sequence $\left\{a_{n}\right\}$ is said to be strictly monotonic increasing if $a_{n}<a_{n+1}$ for all $n$.

## Example

- $1,2,2,3,3,3,4,4,4,4,5,5,5,5,5, \cdots$ is a monotonic increasing sequence.
- $1,2,3,4,5 \cdots$ is a strictly monotonic increasing sequence.


## Monotonic decreasing

A sequence $\left\{a_{n}\right\}$ is said to be monotonic decreasing if $a_{n} \geq a_{n+1}$ for all $n$.

Monotonic decreasing
A sequence $\left\{a_{n}\right\}$ is said to be monotonic decreasing if $a_{n} \geq a_{n+1}$ for all $n$. A sequence $\left\{a_{n}\right\}$ is said to be strictly monotonic decreasing if $a_{n}>a_{n+1}$ for all $n$.

Monotonic decreasing
A sequence $\left\{a_{n}\right\}$ is said to be monotonic decreasing if
$a_{n} \geq a_{n+1}$ for all $n$. A sequence $\left\{a_{n}\right\}$ is said to be strictly monotonic decreasing if $a_{n}>a_{n+1}$ for all $n$.

## Example

- $1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n} \cdots$ is a strictly monotonic decreasing
sequence.

Monotonic decreasing
A sequence $\left\{a_{n}\right\}$ is said to be monotonic decreasing if
$a_{n} \geq a_{n+1}$ for all $n$. A sequence $\left\{a_{n}\right\}$ is said to be strictly monotonic decreasing if $a_{n}>a_{n+1}$ for all $n$.

## Example

- $1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n} \cdots$ is a strictly monotonic decreasing sequence.
- $-1,-1,-2,-2,-3,-3,-4,-4, \cdots$ is a strictly monotonic decreasing sequence.


## Oscillating sequence

The sequence $\left\{a_{n}\right\}$ given by $1,-1,1,-1, \cdots$ is neither increasing nor decreasing.

## Oscillating sequence

The sequence $\left\{a_{n}\right\}$ given by $1,-1,1,-1, \cdots$ is neither increasing nor decreasing. Hence $\left\{a_{n}\right\}$ is not a monotonic sequence.

## Oscillating sequence

The sequence $\left\{a_{n}\right\}$ given by $1,-1,1,-1, \cdots$ is neither increasing nor decreasing. Hence $\left\{a_{n}\right\}$ is not a monotonic sequence.

## Note

A monotonic increasing sequence $\left\{a_{n}\right\}$ is bounded below and $a_{1}$ is the glb of the sequence.

## Oscillating sequence

The sequence $\left\{a_{n}\right\}$ given by $1,-1,1,-1, \cdots$ is neither increasing nor decreasing. Hence $\left\{a_{n}\right\}$ is not a monotonic sequence.

## Note

A monotonic increasing sequence $\left\{a_{n}\right\}$ is bounded below and $a_{1}$ is the glb of the sequence. A monotonic decreasing sequence $\left\{a_{n}\right\}$ is bounded above and $a_{1}$ is the lub of the sequence.

## $\dddot{๕}$ Time to Interact



