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Motivation

Introduction to Sets

� Forget everything you know about numbers.

� In fact, forget you even know what a number is.
� This is where mathematics starts.
� Instead of math with numbers, we will now think

about math with “things“.
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Motivation

Introduction to Sets

For Example
The items you wear: shoes, socks, hat,
shirt, pants, and so on.

I’m sure you
could come up with at least a hundred.
This is known as a set.
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Motivation

Introduction to Sets

For Example
Types of fingers.

This set includes index,
middle, ring, and pinky.

So it is just things grouped together with a certain
property in common.
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Motivation

Introduction to Sets

What is set ?
Well, simply put, it’s a collection.

Definition
A set is a collection of well defined objects or things.
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Motivation

Introduction to Sets

Notations

� Sets are generally denoted by capital letters
A,B ,C , · · · etc.,

� Elements of the sets are denoted by the small letters
a, b, c, d , e, f , · · · etc.,

� Is x is an element of the set S , then it is written as
x ∈ S and read as x belongs to S .

� If x is a not the member of the set S , then it is
written as x /∈ S and read as x does not belong to S .
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Motivation

Introduction to Sets

Example
Consider the set V = {a, e, i , o, u}
a ∈ V , i ∈ V but b /∈ V

V is the set of vowels in alphabet.

Is it ?
Girls are brilliant.
Is it a set ?
No, because here brilliant is not defined.
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Motivation

Sets

N - Natural Numbers {1, 2, 3, 4, · · · }

Z - Set of Integers {0,±1,±2,±3,±4, · · · }
Q - Set of Rational Numbers {p

q
, q 6= 0}

R - Set of Real Numbers (−∞,∞)
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Motivation

Graphical View

N
Z
Q
R

N ⊂ Z ⊂ Q ⊂ R
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Motivation

Function

P Function - Relation between two non-empty sets.

P Let A and B be two non-empty sets. A function or
mapping f from A into B is a rule which assigns each
element a ∈ A a unique element b ∈ B .

P In mathematically written as f : A→ B defined by
f (a) = b for all a ∈ A.
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Motivation

A

Bf

f(a)
a b

W Consider the function f : A→ B by f (a) = b

W A is called the domain of f
W B is called the co-domain of f
W The element b ∈ B is called the image of a under f .

W The element a ∈ A is called the pre-image of b under f .
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Motivation

Example
Consider the function f : R→ R defined by f (x) = x2.

Any positive real number x has two pre-images under f
given by

√
x and −

√
x .

Example 9 has two pre-images which are 3 and −3.
Any negative real number x does not have a pre-image
under f
Example −9 has no pre-image under f
So range set of this function is R+ ∪ {0}.
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Graphical
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B
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5
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Is it function ?

Yes
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Is it function ? If it is, what type is it?

One - to - one (or) Injective
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f

Constant Function
f : N→ N defined by f (x) = 3 is called a constant
function. The range of f is 3.
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Sequence

Introducing Sequence

� In maths, we call a list of numbers in order a sequence.

� Each number in a sequence is called a term.
� If terms are next to each other they are referred to as

consecutive terms.
� When we write out sequences, consecutive terms are

usually separated by commas.
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Sequence

Example
Consider the following collection of real numbers given by

1,
1
2
,
1
3
,
1
4
, · · ·

Graphical

0 11
2

1
3

1
4

1
5

1
n

1st Term2nd Term3rd Term4th Termnth Term
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Sequence

Example
Consider the following collection of real numbers given by
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1
3
,
1
4
, · · ·

Graphical

0 11
2

1
3

1
4

1
5

1
n

1st Term2nd Term3rd Term4th Termnth Term

This is an example of sequence of real numbers.
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Sequence

Sequence is a function whose domain is the set of natural
numbers.

Definition
Let f : N→ R be a function and f (n) = an. Then
a1, a2, a3, · · · , an, · · · , is called the sequence in R
determined by the function f and is denoted by {an}, an is
called the nth term of the sequence.
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Sequence

Infinite and finite sequences
� A sequence can be infinite. That means it continues forever.

For example, the function f : N→ N by f (n) = 10n determines
the infinite sequence.

10, 20, 30, 40, 50, 60, · · ·
� If a sequence has a fixed number of terms it is called a finite

sequence.
For example, the function f : N→ R by f (n) = (−1)n,
determines the finite sequence.

−1, 1
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Sequence

Example of Sequence

 The function f : N→ R given by f (n) = n2.

 The function f : N→ R given by f (n) =
1
n
.

 The function f : N→ R given by f (n) = xn−1.
(Geometric Sequence)
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Convergence

Before giving the formal definition of convergence of a
sequence, let us take a look at the behaviour of the
sequences in the above examples.
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Convergence

The elements of the sequence
1
n
seem to approach a single

point as n increases.

In these sequence the values are
either increasing or decreasing as n increases, but they
eventually approach a single point. Though the elements

of the sequence
(−1)n

n
oscillate, they eventually approach

the single point 0. The common feature of these
sequences is that the terms of each sequence accumulate
at only one point.
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Convergence

Convergence of a Sequence
We say that a sequence (xn) converges if there exists
x0 ∈ R such that for every ε > 0, there exists a positive
integer N (depending on ε) such that xn ∈ (x0 − ε, x0 + ε)
for all n ≥ N.
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Convergence

a1 a2 a3 a4 a5 a6 anan+1
an+2an+3

an+4

ll − ε
(

l + ε
) N

∣∣∣∣∣

Definition
Let {an} be a sequence of real numbers.

{an} → l iff
given ε > 0 there exists a natural number N such that
an ∈ (l − ε, l + ε) for all n ≥ N.
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Convergence

Graphical View
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For any ε > 0, ∃ a positive integer N such that
|an − L| ≤ ε for all n > m.
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Convergence

Convergence of the sequence 1/n
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Convergence

The sequence
n
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Convergence
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Convergence

The sequence n2
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Convergence

The sequence n2
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Convergence

Properties of sequence
1. A sequence cannot converge to two different limits.

2. A sequence converges to real number A and B then
A = B .

3. Any convergent sequence is a bounded sequence.
Converse is not true. Example : {(−1)n} is a bounded
sequence but not a convergent sequence.

4. Any convergent sequence is bounded.
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Convergence

Naming sequences
Here are the names of some sequences which you may
know already:

2, 4, 6, 8, 10, · · · Even Numbers
1, 3, 5, 7, 9, · · · Odd numbers
3, 6, 9, 12, 15, · · · Multiples of 3
5, 10, 15, 20, 25, · · · Multiples of 5
1, 4, 9, 16, 25, · · · Square numbers
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Bounded Sequence

Bounded above
A sequence {an} is said to be bounded above if there
exists a real number k such that an ≤ k for all n ∈ N.
Then k is called the upper bound of the sequence {an}.
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Bounded Sequence

Graphical View

Range of the sequence is

{1, 1
2
,
1
3
, · · · , 1

n
}, Upper

bounds are 1,2,3,· · ·
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Bounded Sequence

Bounded below
A sequence {an} is said to be bounded below if there
exists a real number k such that an ≥ k for all n ∈ N.
Then k is called the lower bound of the sequence {an}.
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Bounded Sequence

Graphical View

Range of the sequence is

{1, 1
2
,
1
3
, · · · , 1

n
}, Lower

bounds are
0,−1,−2, · · · ,−n
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Bounded Sequence

Bounded Sequence
A sequence {an} is said to be bounded sequence if it has
both bounded above and bounded below.

Example

0 11
2

1
3

1
4

1
5

1
n

This sequence has both upper and lower bound so it is
bounded sequence.
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Bounded Sequence

Example of Bounded Sequence

` Consider the sequence 1,
1
2
,
1
3
, · · · , 1

n
.

Here 1 is the
lub and 0 is glb. It is bounded sequence.

` The sequence 1, 2, 3, · · · , n, · · · is bounded below but
not bounded above. 1 is the glb of the sequence.
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Monotonic Sequences

Monotonic increasing
A sequence {an} is said to be monotonic increasing if
an ≤ an+1 for all n.

A sequence {an} is said to be strictly
monotonic increasing if an < an+1 for all n.

Example
1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, · · · is a monotonic
increasing sequence.
1, 2, 3, 4, 5 · · · is a strictly monotonic increasing
sequence.
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Monotonic Sequences

Monotonic decreasing
A sequence {an} is said to be monotonic decreasing if
an ≥ an+1 for all n.

A sequence {an} is said to be strictly
monotonic decreasing if an > an+1 for all n.

Example

1,
1
2
,
1
3
, · · · , 1

n
· · · is a strictly monotonic decreasing

sequence.
−1,−1,−2,−2,−3,−3,−4,−4, · · · is a strictly
monotonic decreasing sequence.
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Monotonic Sequences

Oscillating sequence
The sequence {an} given by 1,−1, 1,−1, · · · is neither
increasing nor decreasing.

Hence {an} is not a monotonic
sequence.

Note
A monotonic increasing sequence {an} is bounded below
and a1 is the glb of the sequence. A monotonic decreasing
sequence {an} is bounded above and a1 is the lub of the
sequence.
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Monotonic Sequences

¦ ¦ Time to Interact ¦ ¦
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